Sanjay PJ

Horizontal Pod Autoscaling with Kubernetes

Tech DevOps

Kubernetes, the powerful orchestration platform for containerized applications, offers numerous features to ensure that your applications are running efficiently and scaling as needed. One of the most impactful features is Horizontal Pod Autoscaling (HPA). In this blog, we’ll walk through setting up HPA for a simple Node.js application on a Kubernetes cluster running on Docker Desktop for Windows. We’ll cover everything from setting up your environment to deploying a scalable application and testing its autoscaling behavior.

Prerequisites

  • Docker Desktop for Windows: Ensure Docker Desktop is installed and Kubernetes is enabled.
  • Metrics Server: Required for HPA to work. It collects resource usage data.
  • Apache Benchmark: For load testing.

Setting Up Metrics Server

Download and Edit components.yaml:

  • Get the latest components.yaml from the metrics server releases page.
  • Open components.yaml in your text editor.
  • Add --kubelet-insecure-tls under the args section to bypass TLS verification.
  • Save the file.

Apply the Configuration:

kubectl apply -f components.yaml

Verify Metrics Server:

Check if the metrics server is collecting data:

kubectl top node
kubectl top pod -A

Creating and Deploying a Dockerized Node.js Application

Write a Dockerfile: Create a Dockerfile in the root directory of your Node.js application:

# Use the official Node.js image
FROM node:14

# Create and set the working directory
WORKDIR /usr/src/app

# Copy package.json and install dependencies
COPY package*.json ./
RUN npm install

# Copy the rest of the application code
COPY . .

# Expose the port the app runs on
EXPOSE 3000

# Command to run the application
CMD [ "node", "index.js" ]

Build the Docker Image:

docker build -t test/node-example .

Push the Image to Docker Hub:

docker tag test/node-example your-dockerhub-username/node-example
docker push your-dockerhub-username/node-example

Kubernetes Configuration Files

Deployment Configuration (k8s/deployment.yml):

apiVersion: apps/v1
kind: Deployment
metadata:
  name: node-example
spec:
  replicas: 1
  selector:
    matchLabels:
      app: node-example
  template:
    metadata:
      labels:
        app: node-example
    spec:
      containers:
        - name: node-example
          image: your-dockerhub-username/node-example
          imagePullPolicy: Always
          ports:
            - containerPort: 3000
          resources:
            limits:
              cpu: "0.5"
            requests:
              cpu: "0.25"

Service Configuration (k8s/service.yml):

apiVersion: v1
kind: Service
metadata:
  name: node-example
  labels:
    app: node-example
spec:
  selector:
    app: node-example
  ports:
    - port: 3000
      protocol: TCP
      nodePort: 30001
  type: LoadBalancer

Horizontal Pod Autoscaler Configuration (k8s/hpa.yml):

apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
  name: node-example
spec:
  maxReplicas: 4
  minReplicas: 1
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: node-example
  targetCPUUtilizationPercentage: 50

Apply Configurations:

kubectl apply -f k8s

Monitoring Autoscaling

Terminal 1 - Monitor Deployments:

while ($true) {
    cls
    kubectl get deployments
    Start-Sleep -Seconds 1
}

Terminal 2 - Monitor HPA:

while ($true) {
    cls
    kubectl get hpa
    Start-Sleep -Seconds 1
}

Testing Autoscaling

Install Apache Benchmark:

Apache Benchmark is often included with Apache HTTP Server. Install it if you haven’t already.

Run Load Test:

ab -c 5 -n 1000 -t 100000 http://127.0.0.1:3000/

This command will generate load on your Node.js application and trigger autoscaling based on CPU usage.

Conclusion

Congratulations! You’ve successfully set up Horizontal Pod Autoscaler for a Node.js application on Kubernetes. By monitoring the autoscaling behavior, you can ensure that your application remains responsive under varying loads, leveraging Kubernetes’ powerful scaling capabilities.

Happy Scaling!

Feel free to adjust any specific details according to your setup or preferences.